AD-A161 238 NRVV lllLl'l’llRV srmmos FOR TECH!CQL SWT”E
OCUIIENTRTION OF EMBEDDED TACTICAL SYSTEMS; A CRITICAL
REVIENCU> NAVAL POSTGRADUATE SCHOOL MONTEREY CA

UNCLASSIFIED H C LYON SEP 83 F/

4
:
4
4
[
4
[
[
L
L
(
\
1
4
f
1
L
1
]
)
1
4
L
A
o
'l
4
r

-
4
¢

- WLV,

. K - . A » " a ACAA A LU e
\ = -~ A P Evpmmmm— SR S - 7 |
\.-’g& ”

,

R‘-

!
'

- - '.""‘

Lk s g
. e

e,

=
N
il
==
|
(4}

lizs s, pes

FFFFEEE R

EEFE
==
[§

rr
r
re
o

o

- MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS ~ (963 - =
r
b
b
r
3
p

-
'-
=
b°.-
) -
-
- - B . - LA Cetect e tat e
P ‘ o ..-. . o - "-.-.l i "_ -.. -
. e o . P ‘;- Q. - g L] N

AD-A161 238

OTE FiLE COPY

NAVAL POSTGRADUATE SGHOOL

Monterey, Galifornia

THESIS

NAVY MILITARY STANDARDS FOR
TECHNICAL SOFTWARE DOCUMENTATION OF
EMBEDDED TACTICAL SYSTEMS;

A CRITICAL REVIEW

by
Harvey Channing Lyon

September 1985

Thesis Advisor: Gordon H. Bradley
Co-advisor: Carl R. Jones

Approved for public release; distribution unlimited

Tl we———" PO S S e BT YA S P 1

...................

.................

R T A S L B SO S I I TP PR -.--'.'.'.'.‘.'.‘.'-',.\

Ty oy

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE BEFORE COPT BN RM
—REFOAT NUMBER lz. GOVT ACCESSION NO.| 3, nicmsnf's CATALOG NUMBER
4. TITLE (and Subtitle) hd $. TYPE OF REPORT & PERIOD COVERED
Navy Military Standards for Master's Thesis
Technical Software Documentation of September 1985
Embedded Tactical Systems; 6. PERFORMING ORG. REPORT NUMBER
A Critical Review
7. AUTHOR(s) 8. CONTRACY OR GRANT NUMBER(s)

Harvey Channing Lyon

8. PERFORMING ORGANIZATION NAME AND ADORESS 10. ::gg%‘coE‘LKEMENT‘I’. nao.JEz"'r. TASK
: UNIT NUM
Y Naval Postgraduate School
i— Monterey, CA 93943-5100
&
4 1. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
! Naval Postgraduate School September 1985
1 Monterey, CA 93943-5100 ‘63 NUMBER OF PAGES
5

g 4. MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Oflice) 18. SECURITY CL ASS. (of this report)
o
}
P;
o 18a. DECL ASSIFICATION. DOWNGRADING
5 SCHEDULE
-
‘- 16. DiISTRIBUTION STATEMENT rof thie Report)
ﬁi) Approved for public release; distribution is unlimited
b
4
3
C B 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilferent from Report)

8. SUPPLEMENTARY NOTES
\d

19. XEY WOROES (Continue on reverse side if necessary and identily by dlock number)
. Software Documentation
3 Documentation
s DOD-STD-1679A (Navy)
® Software Life-cycle

20. ABSTRACT rContinue on reverse side {f necessary and Identity by block number)

This thesis critically reviews the Navy's embedded
tactical software development methodology as defined in
DOD-STD-1679A (Navy). The emphasis of the thesis is on the
documentation produced as a result of following that
methodology. Both the development methodology, and the
documentation produced are compared to management and

content recommendations provided by the National Bureau
(continued)

DD , 5%%s 1473 eoimion oF 1 nov 68 1s cesoLETE UNCLASSIFIED

S N 0102-LF-014.-5601

SECURITY CLASSIFICATION OF IS PAGE (When Dete Entersd)

T W o T T S T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Bntesred

-of Standards and academic/commercial publications. The
conclusion reached is that DOD-STD-1679A (Navy) is

adequate for its purpose. However problems in documentation
develop as a result of management's misinterpretation

of the phased life-cycle development methodology

described in DOD-STD-1679A(Navy) and the importance

of a continous documentation effort.

A

o ,..lTvv,.”,
P — YT

2 UNCLASSIFIED

SECURITY CLASSIPICATION OF THIS PAGE(Whon Dats Bntered)

i A A RS e At it e i A A i B Ao A & o b s v e s aer o o |

Approved for public release; distribution is unlimited.

Navy Military Standards for
Technical Software Documentation of
Embedded Tactical Systems;

A Critical Review

by

Harvey Channing Lyon
Lieutenant, United States Navy
t B.S., United States Naval Academy, 1979

Submitted in partial fulfilment of the
requirements for the deqree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1985

‘ Author:) Zz";-cz (% (+ ZAAYS
o Harveéy anning

-
.- Approved by:

Gordon H. esis Co-Advisor

2)
? » / o [(.AA_/
Tarl R,J » Thesis Co-Advisor
™ .
W1lis R. Greer, Chairman of
Administrative Sciences

x.T ™

Kneale T. Mar Dean of
Information and Pol1i Sciences
3
|
..... . e e BRI - - N e T

.......................

T R g e e I ARSI Ak Al SR e Mest Baunautn poss Sea g A A AU S AL S AR B A A 0 4 B0 0 dne Jren A dh B Aol 0 A B Bt M Aod ot Sate el St Mk Sog e Sam e aae a, TT

ABSTRACT

This thesis critically reviews the Navy’s embedded
tactical software development methodoloqy as defined in DOD-
8TD-1679A(Navy). The emphasis of the thesis is on the
documentation produced as a result of following that
methodo}oqy. Both the development methodoloqy,; and the
documentation produced are compared to management and
content recommendations provided by the National Bureau of
Standards and academic/commercial publications. The
conclusion reached is that DOD-STD-146479A(Navy) is adequate
for its purpose. However problems in documentation develop
as a result of management’s misinterpretation of the phased
life-cycle development methodoloqy described in DOD-STD-
14679A(Navy) and the importance of a continous documentation

effort.

TABLE OF CONTENTS

1. INTRODUCTION === = e e e e e e e e e e e e 7
II. SOFTWARE DOCUMENTATION, WHAT IS IT? ———————meeomeme 12
A. THE SOFTWARE LIFE-CYCLE —==-—===—=m—m—m—meoemm 12

B. DOCUMENTATION WITHIN THE SOFTWARE LIFE-CYCLE -- 19

C. TECHNICAL DOCUMENTATION GOALS —=--=——==——=———a- 23
III. NAVY TECHNICAL DOCUMENTATION ———-=—————————m e 26
A. THE NAVY TACTICAL SOFTWARE LIFE-CYCLE ——--——-~- 26
B. NAVAL TECHNICAL SOFTWARE DOCUMENTATION
REQUIREMENTS ——— ==~ e e e e 31
IV. NAVAL DOCUMENTATION, PROBLEMS AND SOLUTIONS ---—-—--- 48
A. NAVAL DOCUMENTATION, HOW DOES IT STACK UP —---- 48
B. NAVAL DOCUMENTATION, THE PROBLEM AND —--——==-=-~- 51
AND CAUSES
C. DOCUMENTATION, A SQLUTION IN ITSELF ————--——ee- 54
V. SUMMARY OF CONCLUSIONS =———=-~—==—=——mmmmmmm oo 40
LIST OF REFERENCES =————=—— == e oo b4
INITIAL DISTRIBUTION LIST —=—==——mmm e

41A11TY
e D

-

iy

.-‘-1'-_11--,-1.-,‘“.,171

ACKNOWLEDGEMENTS

I wish to thank Dr. Gordon Bradley and Dr. Carl Jones of
the Naval Postgraduate School for their direction and
assistance in writing this thesis. Also I wish to thank Jim
Raegan of the Naval Surface Weapons Center for his time,
instruction, and enthusiasm in discussing the problems he
has experienced in developing software for naval tactical
systems. Additionally I wish to thank my father for his time
spent in establishing contacts and collecting material for
this thesis. There were many individuals that provided their
time and insight for interviews without which this thesis
would not have been possible. Although these individuals are

too many to name, I wish to say thank you.

T : . e Tt e Y e
T T e T e T T e e T e e T e T s s T s e ST e
LR Al Sl P TR Ml SN Sl A Sl P, Sl S Syl Sl SR, SR ST WA T AT Yl 5. 7 WL AP, U PG P PP PG PP PP, PR W L P R R P AT

------------ w

e e

.

I. INTRODUCTION

The past ten yvears has seen much written on the impraoved
methods of software development; top-down design, bottom-up
testings modular decomposition, structured progqramming,
stepwise refinement and other related subjects. Even more
recently, with the rising costs of maintenance, and the
rapidly increasing functional requirements for the software
being developed, the need for excellent documentation of
software projects has become apparent with many articles
addressing this issue. The most modern software development
methodologies provide for this required documentation,
addressing areas such as feasibility studies, requirements
analysis, progqram performance specifications, test
requirements, commented code, data flow diagqrams, data
dictionaries, interface specifications, and the like. A
ma jor purpose of these methodologies is to allow software
developed by multiple people to stand independent aof the
individual. That is, to provide a method that captures the
process used and the product produced by a gqroup of
individuals in a manner such that another qroup of
individuals may understand the product produced and the
process used to produce it without requiring further

communication with the oriqginal group.

v ——
o e —
et o

LI e g
)

A e T T L Ty

The Navy, with its extremely automated combat and
engineering systems is like any other software
producing/consuming firm and is one of the largest in the
cateqory of tactical real-time systems and engineering
control systems. With software development and maintenance
costs of naval tactical systems totaling in the billions of
dollarsvannually. even a relatively small improvement in
software development efficiency has an immense potential for
a siqnificant reduction in the cost of a system’s
development. As a consequence, the Navy has continually
updated their Military Standards for Software Development
(DOD-STD-1679A) .

This thesis compares the recommended software
development methodologies of the commercial and academic
fields, and those recommended by the National Bureau of
Standards with those presently in use by the Navy. The main
emphasis is on the documents generated in these
methodologies and the documentation process.

In this thesis the term "software" will be used as
defined by Fairley [Ref. 1:p. 6] to mean the source code and
all the associated documents and documentation that
constitute the software product. Requirements documents,
design specifications, source code, test plans, quality
assurance and confiquration management procedures, software
trouble reports, etc., all congtitute components of the

software product and are included in the term "software".

.. f e e e L e e e
RO Y - .

.. - .
S . .

. .. et . P T A S R i e . .

A W A QO SN G A ST . D L, L R S L L TR I W T T W TG T D S S D)

"Documentation” will be defined as a description of the
characteristics of an entity or process recorded for the
purpose of transferring information about that entity or
process. For the purposes of this thesis "documentation®
will also include descriptions of intent or requirements
such as the information within a computer program
development plan, or a proqram requirements specification.

The term "documentation process" will refer to the
methodoloqy used to collect and explain the associated
characteristics.

The term "documentation leve'", or level of
documentation will refer to the amount of detailed
information the documentation records about the entity or
process in relation to the total amount of information that
ever was available about the entity or process. The more
information recorded in the documentation, the higher the
level of the documentation.

"Document” will refer tao the instrument used to
transport the documentation from one individual to another,
or from one group of individuals to another. Documents are
produced to provide a medium with which documentation can be
transferred.

In the process of writing this thesis, interviews were
conducted with various key individuals experienced in Navy

surface tactical embedded computer system desiqgn projects.

These interviews were non-statistical in nature. The purpose

I NARROAGE | MGORS

of these interviews was to provide experienced opinions and

feelings on problems and causes evident in past and present
development efforts. Additionally, this thesis only views
those practices in use in the Naval Sea Systems Command,
other commands within the Navy may have different
definitions and methodoloqgies. This thesis is not meant to
apply to those commands.

The DDG-51 (AEGIS class destroyer) combat system design
effort was used as the example software development project.
This particular project was chosen because it reflects the
efforts of an experienced desiqgn team (many of the team
members were associated with the CG-47 design effort), and
has adequate funding. Additionally, this project is
relatively new (the computer proqram development plan was
printed in January 1985) and had the aopportunity to take
advantage of the latest software design methodologies.

Chapter Il presents sugqested documentation requirements
of the National Bureau of Standards and introduces a typical
saoftware life-cycle. Chapter III explains the Navy’s
tactical software life-cycle and the documentation
requirements of DOD-STD-1679A (Navy). Chapter IV compares
the Navy’s standards with those recommended in the
commercial/academic field and attempts to offer solutions to
documentation problems expressed to be evident in Naval

tactical software development. Chapter V summarizes th

10

A el e i e saeli il s i atuic)

e e, Dl N st St sl syl e g

T TTWTW W YT

conclusions reached in a method that is meant to serve a

possible "tear out" summary requirement.

11

I1. SOFTWARE DOCUMENTATION, WHAT IS IT?

This section defines "software engineering' as used in

this thesis and introduces the software life-cycle concept

by describing three models sometimes used to represent
different concepts of the software life-cycle. This section
also pfésents some document and documentation
recommendations through the use of the life-cycle models
they are associated with, and presents the qgoale or
reasoning behind the technical documentation process and the

documents produced.

A. THE SOFTWARE LIFE-CYCLE

Barry Boehm (Ref. 2:p. 161 defines software engineering
as "the application of science and mathematics by which the
capabilities of computer equipment are made useful to man
via computer proqrams, procedures, and associated
documentation". Fairley [Ref. l:p. 2] defines software
engineering as "the technological and managerial discipline
concerned with systematic production and maintenance of
software products that are developed and modified on time
and within cost estimates".

Within the context of this thesis it is sufficient to

define software engineering to be the technoloqical and

manaqgerial discipline concerned with the systematic

e . s At ARG a2 A0 Se vy Al A 1o A B0 S e Mivie e 8 S g A A o N A S B TR A S s e 0 o L Bas e oue b i A S Al Ta gk e e Sl el) v-,

production and maintenance of software keeping in mind that
software, as defined earlier, includes the source code and
all associated documents and documentation that constitute
the soffware product.

Experience in software engineering has taught us that it

is extremely important at the start of every software
projecf to develop a model of the life-cycle of the

F particular software product. As Fairley states [Ref. 1:p.
371: "A life-cycle model that is understood and accepted by
all concerned parties improves project communication and

%‘ enhances project manaqeability, resource allocation, cost
control,s, and project quality."”

The model must be developed specifically for the project

at hand, however many generic models are available, that
with minor modifications are usually well suited for the
software project.

Perhaps the most basic model and the most traditional is
the phased life-cycle model often described with the
waterfall chart of Fiqure 1. Introduced in the early 70’s,
but conceptually existant in the mid 60’s [Ref. 2:pp. 35-
38]), the phased life-cycle model segments the life cycle
into a series of successive steps or phases. Each phase
requires a well defined input, utilizes a well defined
processs and results in a well defined output that is used

as the starting point for the subsequent phase.

13

e et e T e e g - «t -
T o R B S T A AU B A S S Ve et e
PP DA S D TP I, YW W Wi DAL T . e W WPt IR 1 I S P AL A R IAIF IR, 1 W SR A) PRSI VAT WL T Wi DO N

SRt B S Mo o g i GC i g e R R S o i e gt S as S i At S i Aot Jengt JdESagt JagE Rl Sgt Sl Bl Aedt “Bat et Aead asll et et sedh and Andh oush Sl Bad Anh aak Aad o ',(*'.*h"-.-'.—v.-j

System
feasibility
Vabhdaton

Sottware plans and
requirements

/ Vatidation

\ Product design

Verification \
k Detaiied design

Verification \
Code
Unit test ’\

integratior

Proauct
verification

fenplempn b on

| -~ System test

L -

Operations and
mayntenance

R iset, n
- evaisdatio

. e

Fiqure 1: Waterfall Model of the Software Life-cycle
(Ref. 2:p. 361

The various phases of the phased life-cycle model are:

1. System Feasibility. Defining a preferred concept for
the software product, and determining its life-cycle
feasibility and superiarity to alternative concepts.

2. Software Plans and Requirements. A complete, validated
specification of the required functions, interfaces,
and performance standards for the software product.

14

Ppr—— v—v. M e ey
4 Lo S
. . .. [

3. Product Desiqgn. A complete, verified specification of
the overall hardware-software architecture, control
structure, and data structure for the product, along
with such other necessary components such as draft
user’s manuals and test plans.

4. Detailed Desiqn. A complex, verified specification of
the control structure, data structures, interface
relations, sizinq, key alqorithms, and assumptions for
each proqram component.

S. Codinq. A complete, verified set of the program
components,

b&. Inteqration. A properly functioning software product
compased of the software components.

7. Implementation. A fully functioning operational
hardware-software system, including such objectives as
program and data conversions, installation and
training.

8. Maintenance. A fully functioning update of the
hardware~-software system. This subqoal is repeated for
each update/ modification.

An important aspect of the phased life-cycle model is
that each phase ends with verification or validation.
Validation as it is used here means to make a dedicated
effort to ensure the product of the phase is actually what
was intended to be produced at the beginning of the phase.
Informally, validation is "Are we building the right
product?". Verification as it is used here refers to a
dedicated effort to ensure that the product or output of the
phase is correct for the input of the phase; Informally,
verification is "Are we building the product right?". In a

development desiqn such as the phased life-cycle model that

relies strongqly on the ocutput from one phase as the input to

15

T e T e e e T T A o RIS 0 ":]
e RO

;_‘\‘A';_';'L'.'L'LL s LL."'LxL_l'-xA DAL WAL LA‘_‘[PRI S I S,

AARCRA AN AN A A te 4 U S S S C oL TN m LWy T vy my v e —— T ———T T D e Sad Snl fe 1

the next phase, the determination of the correctness of the
output before it is used as input is vital to the process.
Verification and validation are planned conscientous efforts
to eliminate errors within the development process.

There are many critics of the phased life-cycle
approach. Among their complaints is that the approach does
not acchrately reflect the actual software development
process, that it does not reflect the interaction and

overlap between phases [Ref. i1:p. 41]. Nor does the phased

life-cycle approach provide for prototypes, or enhancement

methods. Additionally, if an error is made in the early
stages, and is missed in the original validation, the error
will not be evident until the final validation is made after
the system is implemented. The phased life-cycle approach
does not provide a means to alter a project’s design once
the implementation phase is reached without a very expensive
repetition of the previous phases. Consequently, if a fatal
problem is uncovered in the validation portion of the
implementation phase of the phased life-cycle approach it is
very expensive to correct.

The beauty of the phased life-cycle approach is its
simplicity. The model is easy to understand, easy to
represent, and allows for the definition of specific
milestones even if they are hard to reach in actual

practice.

16

P TS SR A e
NI I IN P Dy T Pw)

G e e e .
U AL WA W AL AT WAL S

TETETE YT T Ty

Another software life-cycle model is the Prototype Madel
shown in Fiqure 2. The model emphasizes the source of
product requests, the major go/no-qo decision points, and
the use of prototypes. A prototype is a model or a mockup of
the software product. In contrast to a simulation model, the
prototype model exhibits components of the actual product
althoudh normally at reduced capability or performance
standards (Ref., 1:p. 49). Prototyping allows designers to
explore various technical issues and/or to allow the gradual
development of requirements and performance specifications.

| i
(:.l..—l (_ﬁ E=REA
— T

| I

tmptement otona|

Fiqure 2: The Prototype Software Life-cycle Model (Ref.
1:p. S11

17

hasadie i Sad el Sk bl ekt L andb tedl Sl el s S S A A A it N S i

The approach is useful when there is not a clean set of
system requirements and the possibility of system
requirements chanqing is high. Prototypes are desiqned to
allow experimentation and chanqge without the expense of full
implementation, and to inexpensively identify the errors
normalfy present in the first attempt to develop a system.

Critics of the prototyping method cite the "Let’s qo
with the prototype"” attitude that never develops the full
system, or the expense involved with larger systems aof
building the system twice. However, when developing a new
system from the beqinning, some form of prototyping is
usually desirable.

Yet another life-cycle model is the iterative
enhancement model. In this model each version is a complete
system that performs useful work. Enhancements are made to
the previous system to add new capabilities as required.
Some minor redesiqn of the previous system may occur to
correct design deficiencies evident in the previous system;
however; the majority of change is in the form of system
enhancements.

As stated earlier, different models exist for different
kinds of projects. Each emphasizes different aspects of the
software life-cycle, and in many cases more than one type of
model is combined to allow the development of a model

specifically tailored to the project at hand. The most

18

PRl Rt Ll ks Jeudh saa o — P —

important idea to be captured is the need for a life-cycle
model. Such a model should encompass all the activities
required to define, develop, test, deliver, operate, and
maintain a software product. Many models recommend specific
documents be produced at different phases to contain the
documentation suqqested for that phase. No single model is
appropfiate for all software products. However defining a
model early on in the product development and identifying
the planmed documents to be produced is essential to the
product’s success.

The next section will view some recommended documents
and the documentation contained in these documents as a

function of the life-cycle phases.

B. DOCUMENTATION WITHIN THE SOFTWARE LIFE-CYCLE

Computer proqrams evolve in phases from the time that an
idea to create or modify software occurs through the time
that the software engineering process produces the required
output. Using the terminologqy defined in the National Bureau
of Standards Federal Information Processing Standards (NBS
FIPS) publications [(Ref. 31, the three major phases of'the
software project are: the initiation phase, the development
phase, and the operation phase. The three phases,; along with
their associated sub-phases and suqqested documentation

documents are shown in Fiqure 3. This thesis is concerned

19

et S T e e e e e e e e T e e T e
AL PP ISP 2P I P RIS IR PR RTINS

Bt i b |

with the suqqested documentation collected during these

phases.
INITIATION OPERATION
PHASE - DEVELOPMENT PHASE PHASE
Definition Design Programming Test
Stage Stage Stage Stage
PROJECT
REQUEST Functional System/ Users
DOCUMENT Requirements Subsystem Manual
Document Specification
FEASIBILITY
STUDY Program Operations
DOCUMENT Specification Manual
.- Data Data Base Program
COST/BENEFIT Requirements Specification Maintenance
ANALYSIS Document Manual
DOCUMENT - .
) Test Plan Test Analysis
* Report
Fiqure 3.

Documentation Within the Software Life-cycle [Ref.
3:p. 61

. Project Request Document. The purpose of this document

is to provide the means for a user orqganization to request

the development, procurement,

or modification of software.

It serves as the initiating document in the software life-

cycle, and provides a basis for communication with the

requesting organization to further analyze requirements and
N

i assess impacts. This document

is Qquite often embedded in

another document as a part of a larqer system.

v Mg A R it A S IR CupanC R SR L S A A IRl Jink Sauth seddh Sndi Aunt sien st T

Feasibility Study Document. The purpose of the

feasibility study document is to provide: (1) an analysis of
cbjectives, requirements and concepts; (2) to evaluate
alternative approaches; and (3) to identify the proposed
solution and the justifying arquments that make this the
most attractive alternative . This document, combined with
the cost/benefit analysis document, should provide
manaqement with the required information to make an informed
decision on whether or not to continue the project.

Cost/Benefit Analysis. The purpose of this document is

to provide manaqers, users, desiqners, and auditors with
adequate cost and benefit information to analyze different
alternatives fraom the standpoint of the cost and benefit
tradeoffs.

Functional Requirements Document. The purpose of this

document is to provide a basis for a mutual understanding
between all concerned parties about the results of the
initial definition stage of the software, including the
requirements, operating environment, and development plan.

Data Requirements Document. The purpose of this document

is to provide, durinq_the definition stage, a data
description and technical information about data collection

requirements.

System/Subsystem Specification. The purpose of this

document is to specify for analysts and progqrammers the

requirements, operating environment, desiqn characteristics,

and proqram specifications (if desired) for a

system/subsystem.

Program Specification. The purpose of this document is

to specify for proqrammers the requirements, operating
environment, and desiqn characteristics of the computer
proqram.

Data Base Specification. The purpose of this document is

to specify the identification, logical characteristics, and
physical characteristics of a particular database.

User’s Manual. The purpose of this document is to
sufficiently describe the functions performed by the
software in a fashion that all users of the system might be
able to understand (that is it uses non-ADP terminoloqy).

Operations Manual. The purpose of this document is to
provide computer operations personnel with a description of
the software and of the operational evironment so that the
software may be run properly.

Program Maintenance Manual. The purpose of this manual

. is to provide the maintenance programmer with the
é information necessary to understand the proqrams, their
- operating environment, and their maintenance procedureé.

This includes a listing of the code or instructions on how

to obtain a listing.
Test Plan. The purpose of this document is to provide a

plan for the testing of software; detailed specifications,

e

T e TRTNT MR APt S . T DA AN N IR N Sl A=Al e ihadh S St S Mk

Ot ’aite e Ahe i ins Rt A i e SRt S A R Al AR Rk T it Ak J ‘"‘T

descriptions, and procedures for all tests; and test data
reduction and evaluation criteria.

Test Analysis Report. The purpose of this dccument is

to record and analyze test results and findings.
Deficiencies and capabilities are presented for review and
provide a basis to determine software readiness for
implementation.

The next section will describe the reasoning behind

recommending all these documents and the documentation

contained within them.

C. TECHNICAL DOCUMENTATION GOALS

The purpose of qood technical documentation, that

documentation which deals with for example, proqram
requirements, proqram design, interfaces, data requirements,
alqorithms, structures, etc., can be summarized in one
phrase; to accommodate change at a reasonable cost.
Furthermore the documents which contain this documentation
provide definitive work products to be produced in each
phase of the life-cycle. If a project were to meet all of
its requirements and specifications during the testing
phase, to maintain the same individuals throughaout, and to
face a completely static environment for its entire life-
cvycle, then documentation on how it performed its functions
would be absolutely worthless after completion of the

project except to the curious. However this is most always

23

- e, - Bl - e e A e i i A" R o /A i = o Al i PSP i ~ ol A o

never the case. The foreword to DOD-STD-1679A (Navy) (Ref.
4:p. 1ii] states three major factors in the design and

documentation of Navy tactical praograms. These are:

Criticality of Performance. The combat capability of
defense systems and the combat survivability of combatant
units of the operating forces depend, in part, upon the
effective operation of the software. Therefore, careful,
persistent management must be exercised in the software
development phase to ensure maximum reliability and
maintainability.

Changing Operational Requirement. Software implements
system operations and doctrine in areas susceptible to
many changes of performance requirements and
specifications. These changes often impact the software
and need expeditious implementation. This demands that
software be designed to facilitate efficient chanqge,
sometimes at the expense of technical design efficiency.
Designers must continously consider the tradeoffs hetween
future modifiability of the product and desiqgn efficiency
as the requirements now exist. Coantinuation of an
efficient chanqge capability over the operational life of
the system alsa requires detailed documentation
describing the system and the software. Proposed chanqges
and their total impact must be easily discernible and
must be capable of being implemented by personnel not
associated with the original development effort.

Life-cycle Cost. Development and implementation of
changes to the software over the operational life of the
system are costly. The desiqgn of the software during
development must be strongly influenced by factors which
will reduce life-cycle costs.

That the underlying qoal of any documentation is to
provide communication of the characteristics of a system and
the processes used in developing the system independant of
individuals, is apparent from the forewaord to DOD-STD-1679A
(Navy) and other publications. Technical documentation must
anticipate change in the proqgqrams. Enough information,

through flowcharts, listings, data dictionaries, etc., must

s e et At et
PN A

- At et et Tt - >
. - - " - 3 - . T e ® . DU T - PURES Y st e T et - N ‘et e . . - -t e ™ et %" e
ol sl PRI NS ISP Ny Ay AL N I PURT YRR WA IR T T Uiy DR AP S TR Sl DA Ty DRI W D T T W AT Y

)

L@

et T

T e WOW W N W 4 IEE R A

C i ST e A S s A . e

T TR T

be available to persons not associated with the original
desiqn qroup to allow them to develop an understanding of
what the progqram does and how it does it.

The next section will discuss the Navy’s methods for

providing this technical documentation as prescribed by DOD-

STD-1679A(Navy) and interpreted by the DDG-51 Combat System

Software Development Project.

Y

III. NAVY TECHNICAL DOCUMENTATION

As is made apparent in the previous sections, excellent

documentation is an important portion of any software

project. This requirement holds true for Navy software
projects as well where a major consideration of the project
is to plan for chanqe. This section presents a description
of the navy tactical software life-cycle as described in
DOD-STD-1679A(Navy) and presents the planned documentation
in an example Navy software project by describing the
planned documents to be produced in each phase of the

life-cycle.

A. THE NAVY TACTICAL SOFTWARE LIFE-CYCLE

"The software challenqe is to control the desiqn process
for a complex of operational computer proqrams so that the
resulting products can be inteqrated into a reliable,
maintainable, and survivable combat system fully responsive
to the mission requirements"” [Ref. S]1. This is the opening
paraqraph to the DDG-51 Computer Proqram Development Plan.
It is like the challenge of any major software undertaking,
with the exception that the possibility of further chanqge,
modifications, and enhancements is much qreater, and that
the software project, being a qovernmental project, will

always be under close scrutiny. The Navy tactical software

.......................
.

L T W N N N N W N RN e ,v_-.-—_fxf_vv_v--—_'—_'*'.—”f.——_f_r“—'-_-_,_v.v_v;-—f,f,--vﬂ

life-cycle is very much like the phased life-cycle described
earlier with stages very similiar to those described in NBS
FIPS Publications 38 and 64. Using the Aeqis Shipbuilding

Program, DDG 51 Computer Proqram Development Plan, as an

example of the typical tactical software development plan,
one can see in Fiqure 4 the five phases described in the

develodment plan.

- System Definition and Desiqn Phase!. This is a
predecessor phase in which the functional baseline is
established in the A level specification, which is a
formalization of the top level requirements of the
system. And the first level of the allocated baseline is
created and recorded in the element Bl specification,
which is the breakdown of the A level sgpecification into
loqical elements such as the radar element .

- Computer Program Definition and Design Phase. This phase
encompasses the definition of the computer proaqram
performance requirements, the establishment of interface
requirements, and the specification of the software top
-level design. The performance requirements, documented
in the Proqram Performance Specification (PPS), are the
driving force for every subsequent phase of the computer
program development process from desiqn throuqh testing
and delivery.The requirements incorporated in this
document, alonq with preliminary interface definitions

- and early top level software desiqgn considerations, are

= reviewed by the Navy at the Preliminary Desiqn Review

(PDR) which serves to present the PPS for approval as
. the preliminary allocated baseline for further

%‘ development. Based on the approved PPS, the finalized

interface requirements and the top—-level praoqram design
are developed and documented, respectively, in the

= Interface Design Specification (IDS) and the Proqgram

X Desiqgn Specification (PDS). The Critical Desiqgn Review

tThe DDG-31 software project is a Naval Sea Systems
Command project. However, the vast majority of the project
is performed through a contract with RCA and various
subcontractors. Some Navy projects are developed totally
"in-house", however the normal procedure is to issue |
contracts for the actual software development.

a7

L

7 - * [« ot -° - -t = . Y I- - - ...D T .l
...... R S T i . SOAGA “

. T L T e et PPN - T e et S T - . L
. . B -~ . . . o e . - - . o . . A e R - Se ™
S A N P . LR Y . «tetata TNt aw L3
EPE W SR A O, PP AN S A PSP AL L S S A AR WA SR SRR VAL s S VR WA W ARSI B AT I BT T e W T A I

W

- ¥ . w7

B AC SN

'
'
'
$
4

v

[-1 +dis 3]

soseyd quaudoTaadg aaem1Jos TeOT30BL [BABN ‘4 3anITY

&)

A i aiehs)

NIy
MIAIY
TWNEIINI
_ 33un0330we aana 0ad
NV 141331 1IN NDISIO 3 1NGOW
WYUDOU ¥I1NMNOD
s1s3L 1NN SININIVINDIY
£$71 NOLLY DI 1WA
TOUINOD ANVYSIT SQUVONY LS NOILVOITVA AN
IDNYWHO Y34 3 INCOW
1V04IV '$IUN0II0NY o
‘WY 141325 OUNE > wvsaons
$is31 GNNG ;
¥I1N4wod
NMIVHDIIN P
INIRDTD 12 IYe S1ININININD IV 1321 IINVIWUOIUIS OHNE
mwmigos [T Ty N
18 IIN0? -
18043 '$IWNOIIOWY $O1 Sd4
‘NYIISISIL SININININD 1Y
NOVHLY VIO IINYNUOIN 14
$1531 NOVIVNIIVNOD WYHOOHJ ¥I1NANOD
WYNDONS SINIWININDIY 1521 IINVWUOFHIJ IWNOILINNY
b 5 AN
14041¥ SIWNDIIOWL
NY141S31 ININD YD Jles 10
$1S3L SINIWININDIY
NOLLY 1 411V NO - o —-— INInI
N3N SINIWININOIY 1334 INIWITI
y
1¥04IN $IHNOII0HY
MY 1218591 WIiISAS IS Y
s1%31 SINIWININD Y
NOILY DI IVNO » . WILSAS
niLsas = SININIVINDIV 1531 WILSAS -)
A >
1804 M SININIMINN Y
SINMIITNMG NY YV ARLE RN o7}
1S11 YYNOt1 v Y 140 SININININD I
sis11 |- —-— - -
TYNOT Ly B 140 SININIVINOIV 1531 TVNOILVH3JO T NOT L v 100
INITISVY INITISYE
NIV ISYR 1710044 INIYISVE aILVI0 Y INIVISYE
e AN Mg QIINIONY awvNinIIING TYNOLIDNN Y
Y % vy g %
T T NS I NOLIYHDIINT WIISAS ONI1SD1 WYUDOWY ¥31NdWOI NOILVINIWT 1gW! NYHDO0HS W ILNIWOD NDISI0 ONY NOILINI 930 NDISIO ONY NOILINI S 10 WISAS
WYHOONJ B3 1NIWOD

SISYHS INIWIOIIAZ0

28

C R Ll 2t Rari e i ha At Akt A B ACAGS Al SviasSoe he e At 4 Sl a S A SAe Sne 44 an A Jive ad BVl et S AKE G B Ak Al Ao Auh Shulh died e d T

(CDR) provides the mechanism for Navy review and
approval of these documents. This completes the desiqgn
phase of computer proqgram development process; and these
documents serve as the approved final allocated baseline
for further development.

- Computer Proqgram Implementation Phase. The computer
program implementation phase is based on the approved
documents and specifications produced in the design
phase. The implementation phase encompasses the detailed
design of the proqram modules and data bas@ as well as
the coding and debuqqing of these items. The program
module logical designs and the detailed data base
desiqns are developed and documented,; respectively; in
preliminary Proqram Description Documents (PDDs) and the
Data Base Desiqn Documents (DBD). These documents are
reviewed at Informal Desiqn Reviews, in which the Navy
participates; and which serves to provide approval of
the detailed design and authorization to proceed with
coding. Once coding is completed and error free compiles
of the modules and data base are achieved, an internal
gstructured walk-through of the implemented code is
undertaken to assure compliance with design
requirements. Successful completion of this structured
walk-through serves to release the modules and the data
base for testing. This completes the implementation
phase.

- Computer Proqgram Testing Phase. Computer Program
development te sting is performed within the context of
the top-down approach to development. Testing starts
with the smallest operating components; i.e.s modules,
and develops through successively more complex and
inclusive staqes. Modules are inteqrated into subproqram
builds, which are operational subsets of the complete
computer progqram. Build tests are performed with Navy
participation. Functional capabilities are added to the
subproqram builds, and, in the last stage, the final
build is tested as a complete computer program. Test
plans, test procedures,; and test reports are prepared at
all levels of testing, beqinning with the module unit
testing. The Computer Proqgram Qualification Test,

§ conducted at the developer computer proqram test

1 facility and performed to Navy approved test procedures,

o is the final test of the computer proqram as a

[

b

}

s

standalone entity. The successful accomplishment of this
test marks the completion of the software development
phase. Subsequent activity is in support of element and
system level inteqration and testing. A preliminary
product baseline is established at the completion of the
software testing phase.

